The enumerate() function adds a counter to an iterable.
So for each element in cursor, a tuple is produced with (counter, element); the for loop binds that to row_number and row, respectively.
Demo:
>>> elements = (‘foo’, ‘bar’, ‘baz’)
>>> for elem in elements:
… print elem
…
foo
bar
baz
>>> for count, elem in enumerate(elements):
… print count, elem
…
0 foo
1 bar
2 baz
By default, enumerate() starts counting at 0 but if you give it a second integer argument, it’ll start from that number instead:
>>> for count, elem in enumerate(elements, 42):
… print count, elem
…
42 foo
43 bar
44 baz
If you were to re-implement enumerate() in Python, here are two ways of achieving that; one using itertools.count() to do the counting, the other manually counting in a generator function:
from itertools import count
def enumerate(it, start=0):
# return an iterator that adds a counter to each element of it
return zip(count(start), it)
and
def enumerate(it, start=0):
count = start
for elem in it:
yield (count, elem)
count += 1
The actual implementation in C is closer to the latter, with optimisations to reuse a single tuple object for the common for i, … unpacking case and using a standard C integer value for the counter until the counter becomes too large to avoid using a Python integer object (which is unbounded).
It’s a builtin function that returns an object that can be iterated over. See the documentation.
In short, it loops over the elements of an iterable (like a list), as well as an index number, combined in a tuple:
for item in enumerate([“a”, “b”, “c”]):
print item
prints
(0, “a”)
(1, “b”)
(2, “c”)
It’s helpful if you want to loop over a sequence (or other iterable thing), and also want to have an index counter available. If you want the counter to start from some other value (usually 1), you can give that as second argument to enumerate.