I know three R packages for dictionaries: hash, hashmap, and dict.
Update July 2018: a new one, container.
Update September 2018: a new one, collections
hash
Keys must be character strings. A value can be any R object.
library(hash)
## hash-2.2.6 provided by Decision Patterns
h <- hash()
# set values
h[["1"]] <- 42
h[["foo"]] <- "bar"
h[["4"]] <- list(a=1, b=2)
# get values
h[["1"]]
## [1] 42
h[["4"]]
## $a
## [1] 1
##
## $b
## [1] 2
h[c("1", "foo")]
##
## 1 : 42
## foo : bar
h[[“key not here”]]
## NULL
To get keys:
keys(h)
## [1] “1” “4” “foo”
To get values:
values(h)
## $`1`
## [1] 42
##
## $`4`
## $`4`$a
## [1] 1
##
## $`4`$b
## [1] 2
##
##
## $foo
## [1] “bar”
The print instance:
h
##
## 1 : 42
## 4 : 1 2
## foo : bar
The values function accepts the arguments of sapply:
values(h, USE.NAMES=FALSE)
## [[1]]
## [1] 42
##
## [[2]]
## [[2]]$a
## [1] 1
##
## [[2]]$b
## [1] 2
##
##
## [[3]]
## [1] “bar”
values(h, keys=”4″)
## 4
## a 1
## b 2
values(h, keys=”4″, simplify=FALSE)
## $`4`
## $`4`$a
## [1] 1
##
## $`4`$b
## [1] 2
hashmap
See https://cran.r-project.org/web/packages/hashmap/README.html.
hashmap does not offer the flexibility to store arbitrary types of objects.
Keys and values are restricted to “scalar” objects (length-one character, numeric, etc.). The values must be of the same type.
library(hashmap)
H <- hashmap(c("a", "b"), rnorm(2))
H[["a"]]
## [1] 0.1549271
H[[c("a","b")]]
## [1] 0.1549271 -0.1222048
H[[1]] <- 9
Beautiful print instance:
H
## ## (character) => (numeric)
## ## [1] => [+9.000000]
## ## [b] => [-0.122205]
## ## [a] => [+0.154927]
Errors:
H[[2]] <- "Z"
## Error in x$`[[<-`(i, value): Not compatible with requested type: [type=character; target=double].
H[[2]] <- c(1,3)
## Warning in x$`[[<-`(i, value): length(keys) != length(values)!
dict
Currently available only on Github: https://github.com/mkuhn/dict
Strengths: arbitrary keys and values, and fast.
library(dict)
d <- dict()
d[[1]] <- 42
d[[c(2, 3)]] <- "Hello!" # c(2,3) is the key
d[["foo"]] <- "bar"
d[[4]] <- list(a=1, b=2)
d[[1]]
## [1] 42
d[[c(2, 3)]]
## [1] "Hello!"
d[[4]]
## $a
## [1] 1
##
## $b
## [1] 2
Accessing to a non-existing key throws an error:
d[["not here"]]
## Error in d$get_or_stop(key): Key error: [1] "not here"
But there is a nice feature to deal with that:
d$get("not here", "default value for missing key")
## [1] "default value for missing key"
Get keys:
d$keys()
## [[1]]
## [1] 4
##
## [[2]]
## [1] 1
##
## [[3]]
## [1] 2 3
##
## [[4]]
## [1] "foo"
Get values:
d$values()
## [[1]]
## [1] 42
##
## [[2]]
## [1] "Hello!"
##
## [[3]]
## [1] "bar"
##
## [[4]]
## [[4]]$a
## [1] 1
##
## [[4]]$b
## [1] 2
Get items:
d$items()
## [[1]]
## [[1]]$key
## [1] 4
##
## [[1]]$value
## [[1]]$value$a
## [1] 1
##
## [[1]]$value$b
## [1] 2
##
##
##
## [[2]]
## [[2]]$key
## [1] 1
##
## [[2]]$value
## [1] 42
##
##
## [[3]]
## [[3]]$key
## [1] 2 3
##
## [[3]]$value
## [1] "Hello!"
##
##
## [[4]]
## [[4]]$key
## [1] "foo"
##
## [[4]]$value
## [1] "bar"
No print instance.
The package also provides the function numvecdict to deal with a dictionary in which numbers and strings (including vectors of each) can be used as keys, and that can only store vectors of numbers.
You can use just data.frame and row.names to do this:
x=data.frame(row.names=c("Hi","Why","water") , val=c(1,5,4))
x["Why",]
[1] 5