There are numerous approaches to achieve data partitioning. For a more complete approach take a look at the createDataPartition function in the caTools package.
Here is a simple example:
data(mtcars)
## 75% of the sample size
smp_size <- floor(0.75 * nrow(mtcars))
## set the seed to make your partition reproducible
set.seed(123)
train_ind <- sample(seq_len(nrow(mtcars)), size = smp_size)
train <- mtcars[train_ind, ]
test <- mtcars[-train_ind, ]
It can be easily done by:
set.seed(101) # Set Seed so that same sample can be reproduced in future also
# Now Selecting 75% of data as sample from total 'n' rows of the data
sample <- sample.int(n = nrow(data), size = floor(.75*nrow(data)), replace = F)
train <- data[sample, ]
test <- data[-sample, ]
By using caTools package:
require(caTools)
set.seed(101)
sample = sample.split(data$anycolumn, SplitRatio = .75)
train = subset(data, sample == TRUE)
test = subset(data, sample == FALSE)