CCNA 3 (v5.0 + v6.0) OSPF Practice Skills Assessment Exam Answer

CCNA 3 (v5.0 + v6.0) OSPF Practice Skills Assessment Exam Answer-Packet Tracer

Form A:

Network Diagram:

Diagram uses slightly different naming convention (Hostnames and vlan names) , same topology)

ccna-3-ospf-practice-skills-assessment-exam-answer-1

A few things to keep in mind while completing this activity:

  1. Do not use the browser Backbutton or close or reload any exam windows during the exam.
  2. Do not close Packet Tracer when you are done. It will close automatically.
  3. Click the Submit Assessmentbutton in the browser window to submit your work.

Introduction

In this practice skills assessment, you will configure the Famous University network with OSPF routing. The network is configured with both IPv4 and IPv6 on all devices. This will allow you to implement routing in both OSPFv2 and OSPFv3. In addition, you will configure both versions of OSPF in multiple areas.  For a full list of tasks, see below.

You are not required to configure the following:

  • The network switches
  • The network hosts
  • The College Intranet Server
  • The College Network Cloud

All IOS device configurations should be completed from a direct terminal connection to the device console.

You will practice and be assessed on the following skills:

  • Configuration of IPv4 and IPv6 default routes
  • Configuration of OSPFv2 in a single area
  • Configuration of OSPFv2 in multiple areas
  • Configuration of OSPFv3 in a single area
  • Configuration of OSPFv3 in multiple areas
  • Customization of OSPFv2 and OSPFv3 settings
    • Interface Bandwidth
    • OSPF Priority
    • OSPF timer settings
    • Passive interfaces

You will configure specific devices as follows:

Router Administration:

  • IPv4 and IPv6 default route configuration
  • OSPFv2 and OSPFv3 Area 0 configuration
  • Interface bandwidth configuration
  • OSPFv2 and OSPFv3 router ID configuration
  • Distribution of default routes
  • Auto-cost reference bandwidth configuration for OSPFv2 and OSPFv3

Router Science:

  • OSPFv2 and OSPFv3 Area 0 configuration
  • OSPFv2 and OSPFv3 Area 10 configuration
  • Interface bandwidth configuration
  • OSPFv2 and OSPFv3 router ID configuration
  • Auto-cost reference bandwidth configuration for OSPFv2 and OSPFv3

Router Bio:

  • OSPFv2 and OSPFv3 Area 10 configuration
  • OSPFv2 and OSPFv3 router ID configuration
  • Auto-cost reference bandwidth configuration for OSPFv2 and OSPFv3
  • OSPFv2 and OSPFv3 interface priority configuration
  • OSPFv2 and OSPFv3 hello and dead timer configuration
  • OSPFv2 and OSPFv3 passive interface configuration

Router Physics

  • OSPFv2 and OSPFv3 Area 10 configuration
  • OSPFv2 and OSPFv3 router ID configuration
  • Auto-cost reference bandwidth configuration for OSPFv2 and OSPFv3
  • OSPFv2 and OSPFv3 interface priority configuration
  • OSPFv2 and OSPFv3 hello and dead timer configuration
  • OSPFv2 and OSPFv3 passive interface configuration

Router Technology:

  • OSPFv2 and OSPFv3 Area 0 configuration
  • OSPFv2 and OSPFv3 Area 20 configuration
  • Interface bandwidth configuration
  • OSPFv2 and OSPFv3 router ID configuration
  • Auto-cost reference bandwidth configuration for OSPFv2 and OSPFv3

Router CompSci:

  • OSPFv2 and OSPFv3 Area 20 configuration
  • OSPFv2 and OSPFv3 router ID configuration
  • Auto-cost reference bandwidth configuration for OSPFv2 and OSPFv3
  • OSPFv2 and OSPFv3 interface priority configuration
  • OSPFv2 and OSPFv3 hello and dead timer configuration
  • OSPFv2 and OSPFv3 passive interface configuration

Router Electronics:

  • OSPFv2 and OSPFv3 Area 20 configuration
  • OSPFv2 and OSPFv3 router ID configuration
  • Auto-cost reference bandwidth configuration for OSPFv2 and OSPFv3
  • OSPFv2 and OSPFv3 interface priority configuration
  • OSPFv2 and OSPFv3 hello and dead timer configuration
  • OSPFv2 and OSPFv3 passive interface configuration

Addressing Table

Use the following addresses to configure the network. Some addresses are preconfigured on devices that you are not required to configure, and are provided for reference purposes only.
ccna-3-ospf-practice-skills-assessment-exam-answer-1-1

 

Host Address Table

The addresses of the PC and server hosts are provided for connectivity testing purposes. All addressing is preconfigured.
ccna-3-ospf-practice-skills-assessment-exam-answer-1-2

 

Instructions

Step1: Configure default static routes on the Administration router.

Configure IPv4 and IPv6 default static routes on Administration. Use the exit interface value in your configuration.

Step 2: Configure single-area OSPFv2

On the AdministrationScience, and Technology routers, configure single-area OSPFv2 in Area 0.

a. Use a process ID of 10 for all OSPFv2 processes.

b. Activate routing for the appropriate networks. Use inverse masks that specify only addresses within the networks.

c. Specify a bandwidth value that matches the clock speed of the interfaces of Administration for interfaces of alldevices that are configured in Area 0.

d. Set the router IDs as follows:

  • Administration: 10.20.0.0
  • Science: 10.0.0.0
  • Technology: 20.0.0.0

Step 3: Configure single-area OSPFv3.

On the AdministrationScience, and Technology routers configure single-area OSPFv3 in Area 0.

a. Use a process ID of 10 for all OSPFv3 processes.

b. Activate routing for the appropriate networks.

c. Set the router IDs as follows:

  • Administration: 10.20.0.0
  • Science: 10.0.0.0
  • Technology: 20.0.0.0

Step 4: Configure OSPFv2 in multiple areas.

Configure the routers that have all interfaces in Areas 10 and 20 with OSPFv2.

a. Use a process ID of 10 for all OSPF processes.

b. Activate routing for the appropriate networks. Use inverse masks that specify only addresses within the networks. After this step is completed, hosts on all LANs should be able to communicate with each other over IPv4.

c. Set the router IDs as follows:

  • Bio: 10.1.1.1
  • Physics: 10.2.2.2
  • CompSci: 20.1.1.1
  • Electronics: 20.2.2.2

Step 5: Configure OSPFv3 in multiple areas.

Configure the routers that have all interfaces in Areas 10 and 20 with OSPFv3.

a. Enable the routers to route IPv6.

b. Use a process ID of 10 for all OSPF processes.

c. Activate routing for the appropriate networks. After this step is completed, hosts on all LANs should be able to communicate with each other over IPv6.

d. Set the router IDs as follows:

  • Bio: 10.1.1.1
  • Physics: 10.2.2.2
  • CompSci: 20.1.1.1
  • Electronics: 20.2.2.2

Step 6: Customize OSPFv2.

Customize OSPFv2 operation as follows:

a. For the multiaccess network connected between the Bioand Physics routers, configure priorities so that Bio will become the DR and Physics will be the BDR. Use priority values of 255 and 200.

b. Configure the interfaces on all routers that are attached to LANs with hosts to notsend OSPFv2 traffic into the LAN.

c. Enable all routers to automatically and accurately calculate costs for routes that include 1Gbps Ethernet networks by changing the reference bandwidth.

d. Configure OSPFv2 so that the default routes that are configured on Administrationare automatically distributed to all routers in the network.

e. Adjust the OSPFv2 timers on the Ethernet link between Bioand Physics as follows:

  • Hello: 5 seconds
  • Dead: 20 seconds

Step 7: Customize OSPFv3.

Customize OSPFv3 operation as follows:

a. For the multiaccess network connected between the Bioand Physics routers configure priorities so that Bio will become the DR and Physics will be the BDR. Use priority values of 255 and 200.

b. Configure the interfaces on all routers that are attached to LANs with hosts to notsend OSPFv3 traffic into the LAN.

c. Enable all routers to automatically and accurately calculate costs for routes that include 1Gbps Ethernet networks by changing the reference bandwidth.

d. Configure OSPFv3 so that the default routes that are configured on Administrationare automatically distributed to all routers in the network.

e. Explicitly configure the OSPFv3 timers on the Ethernet link between Bio and Physics as follows:

  • Hello: 5 seconds
  • Dead: 20 seconds

Answers

NOTE: Use cable Console to connect PCs and Routers

ccna-3-ospf-practice-skills-assessment-exam-answer-2

Administration:

Science:

Technology:

Bio:

Physics:

CompSci:

Electronics:

Form B:

Network Diagram:

Diagram uses slightly different naming convention (Hostnames and vlan names) , same topology)

 

ccna-3-ospf-practice-skills-assessment-exam-answer-3

 

A few things to keep in mind while completing this activity:

  1.  Do not use the browser Back button or close or reload any exam windows during the exam.
  2. Do not close Packet Tracer when you are done. It will close automatically.
  3. Click the Submit Assessment button in the browser window to submit your work.

Introduction

In Part I of this practice skills assessment, you will configure the Company A network with routing and ACLs. You will configure dynamic routing with OSPFv2 and distribute a default route. In addition, you will configure two access control lists.

In Part II of this practice skills assessment, you will configure the Company A network with RPVST+, port security, EtherChannel, DHCP, VLANs and trunking, and routing between VLANs. In addition you will perform an initial configuration on a switch, secure switch ports and create SVIs. You will also control access to the switch management network with an access control list.

All IOS device configurations should be completed from a direct terminal connection to the device console from an available host.

Some values that are required to complete the configurations have not been given to you. In those cases, create the values that you need to complete the requirements. These values may include certain IP addresses, passwords, interface descriptions, banner text, and other values.

When you have been given a text value, such as a password, user name, DHCP pool name, ACL name, VLAN name, etc, you must enter these values exactly as they are given in these instructions. If the values do not match exactly, you may not receive credit for your configuration.

For the sake of time, many repetitive but important configuration tasks have been omitted from this activity. Many of these tasks, especially those related to device security, are essential elements of a network configuration. The intent of this activity is not to diminish the importance of full device configurations.

You will practice and be assessed on the following skills:

  • Configuration of initial device settings
  • IPv4 address assignment and configuration
  • Configuration and addressing of device interfaces
  • Configuration of the OSPFv2 routing protocol
  • Configuration of a default route
  • Configuration of ACL to limit device access
  • Configuration of switch management settings including SSH
  • Configuration of port security
  • Configuration of unused switch ports according to security best practices
  • Configuration of RPVST+
  • Configuration of EtherChannel
  • Configuration of a router as a DHCP server
  • Configuration of VLANs and trunks
  • Configuration of routing between VLANs

Addressing table:

ccna-3-ospf-practice-skills-assessment-exam-answer-4

 

VLAN Switch Port Assignment Table:

Port-Channel Groups:

ccna-3-ospf-practice-skills-assessment-exam-answer-5

Instructions:

All configurations must be performed through a direct terminal connection to the device console line from an available host.

Part I: OSPFv2 Router Configuration

Step 1: Plan the Addressing.

Task:
Determine the IP addresses that you will use for the required interfaces on the devices and LAN hosts. Follow the configuration details provided in the Addressing Table.

How:
This part requires and understanding of the addressing constants that make up a normal network separated by subnets. Let’s take a look at the first entry we are asked to find. We are asked to pick any address in the network 192.168.100.20/30.

A Typical network range has two addresses that are not suitable as host addresses, these are the First and the Last addresses are corespond to the Subnet ID and Broadcast address. So with our network we know that 192.168.100.20 will be the Subnet ID so our First usable host address will be 192.168.100.21/30

The next issue we run into is working out how many host addresses are available in the subnet. To explain this process I’m going to draw out 32bits representing the 4 octets of 8bits that make up an IPv4 address.

Now fill up all the slots that correspond to 30 of the 32 bits

This leaves a total of 2 bits for our hosts to use.

Addressing table – Complete
ccna-3-ospf-practice-skills-assessment-exam-answer-9

Step 2: Configure Site 1.

Task:
Configure Site 1 with initial settings:

  • Configure the router host name: Bldg-1. This value must be entered exactly as it appears here.
  • Prevent the router from attempting to resolve command line entries to IP addresses.
  • Protect device configurations from unauthorized access with an encrypted secret password.
  • Secure the router console and remote access lines.
  • Prevent system status messages from interrupting console output.
  • Configure a message-of-the-day banner.
  • Encrypt all clear text passwords.

How:

  • Configure the router host name: Bldg-1. This value must be entered exactly as it appears here.
  • Prevent the router from attempting to resolve command line entries to IP addresses.
  •  Protect device configurations from unauthorized access with an encrypted secret password.
  • Secure the router console and remote access lines.
  • Prevent system status messages from interrupting console output.
  • Configure a message-of-the-day banner.
  • Encrypt all clear text passwords.

Step 3: Configure the Router Interfaces.

Task:
Configure the interfaces of all routers for full connectivity with the following:

  • IP addressing
  • Descriptions for the three connected interfaces of HQ.
  • Configure DCE settings where required. Use a rate of 128000.
  • The Ethernet subinterfaces on Site 2 will configured later in this assessment.

How:

  • IP addressing
  • Descriptions for the three connected interfaces of HQ.
  • Configure DCE settings where required. Use a rate of 128000.
  • The Ethernet subinterfaces on Site 2 will configured later in this assessment.

Step 4: Configure inter-VLAN routing on Site 2.

Task:
Configure router Site 2 to route between VLANs using information in the Addressing Table and VLAN Switch Port Assignment Table. The VLANs will be configured on the switches later in this assessment.

  • Do not route the VLAN 99 network.

How:

Step 5: Configure Default Routing.

Task:
On Main, configure a default route to the Internet. Use the exit interface argument.
How:

Step 6: Configure OSPF Routing.

a. On all routers:
Task:

  • Configure multiarea OSPFv2 to route between all internal networks. Use a process ID of 1.
  • Use the area numbers shown in the topology.
  • Use the correct wild card masks for all network statements.
  • You are not required to route the SVI-NET VLAN network on Site 2.

How:

  • Configure multiarea OSPFv2 to route between all internal networks. Use a process ID of 1.
  • Use the area numbers shown in the topology.
  • Use the correct wild card masks for all network statements.
  • You are not required to route the SVI-NET VLAN network on Site 2.

Calculating the wildcard for each OSPF route is done by looking again at the subnet mask bit. lets use the 192.168.100.20/30 network. The following shows what a wild card mask for 0.0.0.0 or /32 would look like

If we have 30 bits instead we’re left with two bits

This gives us a wild card of 0.0.0.3. Similarly you can look at what a /24 networks bit pattern looks like below.

/24’s wild card mask is 0.0.0.255.
Using this information we can setup the various networks on each of the routers

• Prevent routing updates from being sent to the LANs.

b. On the HQ router:
Task:

  •  Configure multiarea OSPFv2 to distribute the default route to the other routers.

How:

Step 7: Customize Multiarea OSPFv2.

Customize multiarea OSPFv2 by performing the following configuration tasks:
Task:
a. Set the bandwidth of all serial interfaces to 128 kb/s.

b. Configure OSPF router IDs as follows:

  • Site 1: 1.1.1.1
  • HQ: 2.2.2.2
  • Site 2: 3.3.3.3
  • The configured router IDs should be in effect on all three routes.

c. Configure the OSPF cost of the link between Site 1 and HQ to 7500.
How:
a. Set the bandwidth of all serial interfaces to 128 kb/s.

b. Configure OSPF router IDs as follows:

  • Site 1: 1.1.1.1
  • HQ: 2.2.2.2
  • Site 2: 3.3.3.3
  • The configured router IDs should be in effect on all three routes.

c. Configure the OSPF cost of the link between Site 1 and HQ to 7500.

Step 8: Configure OSPF MD5 Authentication on the Required Interfaces.

How:
Configure OSPF to authenticate routing updates with MD5 authentication on the OSPF interfaces.

  • Use a key value of 1.
  • Use xyz_OSPF as the password.
  • Apply MD5 authentication to the required interfaces.

How:

Step 9: Configure Access Control Lists.

Task/How:
You will configure two access control lists in this step. You should use the any and host keywords in the ACL statements as required. The ACL specifications are as follows:

a. Restrict access to the vty lines on HQ with an ACL:

  • Create a named standard ACL using the name telnetBlock. Be sure that you enter this name exactly as it appears in this instruction or you will not receive credit for your configuration.
  • Allow only Admin Host to access the vty lines of HQ.
  • No other Internet hosts (including hosts not visible in the topology) should be able to access the vty lines of HQ.
  • Your solution should consist of one ACL statement.
  • Your ACL should be placed in the most efficient location as possible to conserve network bandwidth and device processing resources.
b. Block ping requests from the Internet with an ACL:

  • Use access list number 101.
  • Allow only Admin Host to ping addresses within the Company A network. Only echo messages should be permitted.
  • Prevent all other Internet hosts (not only the Internet hosts visible in the topology) from pinging addresses inside the Company A network. Block echo messages only.
  • All other traffic should be allowed.
  • Your ACL should consist of three statements.
  • Your ACL should be placed in the most efficient location as possible to conserve network bandwidth and device processing resources.
    c. Control access to the management interfaces (SVI) of the three switches attached to Site 2 as follows:
  • Create a standard ACL.
  • Use the number 1 for the list.
  • Permit only addresses from the admin VLAN network to access any address on the SVI-NET VLAN network. (VLAN25)
  • Hosts on the admin VLAN network should be able to reach all other destinations.
  • Your list should consist of one statement.
  • Your ACL should be placed in the most efficient location as possible to conserve network bandwidth and device processing resources.
  • You will be able to test this ACL at the end of Part II of this assessment.

Part II: Switching and DHCP Configuration

Step 1: Create and name VLANs.

Task/How:
On all three switches that are attached to Site 2, create and name the VLANs shown in the VLAN Table.

  • The VLAN names that you configure must match the values in the table exactly.
  • Each switch should be configured with all of the VLANs shown in the table.

Step 2: Assign switch ports to VLANs.

Task/How:
Using the VLAN table, assign switch ports to the VLANs you created in Step 1, as follows:

  • All switch ports that you assign to VLANsn should be configured to static access mode.
  • All switch ports that you assign to VLANs should be activated.
  • Note that all of the unused ports on FL-A should be assigned to VLAN 99. This configuration step on switches FL-B and FL-C is not required in this assessment for the sake of time.
  • Secure the unused switch ports on FL-A by shutting them down.

Step 3: Configure the SVIs.

Task/How:
Refer to the Addressing Table. Create and address the SVIs on all three of the switches that are attached to Site 2. Configure the switches so that they can communicate with hosts on other networks. Full connectivity will be established after routing between VLANs has been configured later in this assessment.

Step 4: Configure Trunking and EtherChannel.

Task/How:
a. Use the information in the Port-Channel Groups table to configure EtherChannel as follows:

  • Use LACP.
  • The switch ports on both sides of Channels 1 and 2 should initiate negotiations for channel establishment.
  • The switch ports on the FL-B side of Channel 3 should initiate negotiations with the switch ports on FL-C.
  • The switch ports on the FL-C side of Channel 3 should not initiate negotiations with the switch ports on the other side of the channel.
  • All channels should be ready to forward data after they have been configured.
b. Configure all port-channel interfaces as trunks.
c. Configure static trunking on the switch port on FL-B that is connected to Site 2.

Step 5: Configure Rapid PVST+.

Task/How:
Configure Rapid PVST+ as follows:

a. Activate Rapid PVST+ and set root priorities.

  • All three switches should be configured to run Rapid PVST+.
  • FL-A should be configured as root primary for VLAN 2 and VLAN 4 using the default primary priority values.
  • FL-A should be configured as root secondary for VLAN 8 and VLAN 15 using the default secondary priority values.
  • FL-C should be configured as root primary for VLAN 8 and VLAN 15 using the default primary priority values.
  • FL-C should be configured as root secondary for VLAN 2 and VLAN 4 using the default secondary priority values.
b. Activate PortFast and BPDU Guard on the active FL-C switch access ports.

  • On FL-C, configure PortFast on the access ports that are connected to hosts.
  • On FL-C, activate BPDU Guard on the access ports that are connected to hosts.

Step 6: Configure switch security.

Task/How:
You are required to complete the following only on some of the devices in the network for this assessment. In reality, security should be configured on all devices in the network.

a. Configure port security on all active access ports that have hosts connected on FL-A.

  • Each active access port should accept only two MAC addresses before a security action occurs.

• The learned MAC addresses should be recorded in the running configuration.

  • If a security violation occurs, the switch ports should provide notification that a violation has occurred but not place the interface in an err-disabled state.

b. On FL-B, configure the virtual terminal lines to accept only SSH connections.

  • Use a domain name of ccnaPTSA.com.
  • Use FL-B as the host name.
  • Use a modulus value of 1024.
  • Configure SSH version 2.
  • Configure the vty lines to only accept SSH connections.
  • Configure user-based authentication for the SSH connections with a user name of netadmin and an encrypted secret password of SSHsecret9 . The user name and password must match the values provided here exactly.
c. Ensure that all unused switch ports on FL-A have been secured as follows:

  • They should be assigned to VLAN 99.
  • They should all be in access mode.
  • They should be shutdown.

Step 7: Configure Site 2 as a DHCP server for the hosts attached to the FL-A and FL-C switches.

Task/How:
Configure three DHCP pools as follows:

  • Refer to the information in the Addressing Table.
  • Create a DHCP pool for hosts on VLAN 2 using the pool name vlan2pool.
  • Create a DHCP pool for hosts on VLAN 4 using the pool name vlan4pool.
  • Create a DHCP pool for hosts on VLAN 8 using the pool name vlan8pool.
  • All VLAN pool names must match the provided values exactly.
  • Exclude the first five addresses from each pool.
  • Configure a DNS server address of 192.168.200.225.
  • All hosts should be able to communication with hosts on other networks.

Step 8: Configure host addressing.

Task:
Hosts should be able to ping each other and external hosts after they have been correctly addressed, where permitted.

  • Hosts on VLANs 2, 4, and 8 should be configured to receive addresses dynamically over DHCP.
  • Hosts on VLAN 15 should be addressed statically as indicated in the Addressing Table. Once configured, the hosts should be able to ping hosts on other networks.
  • Hosts on the LANs attached to Site 1 should be statically assigned addresses that enable them to communicate with hosts on other networks, as indicated in the Addressing Table.

How:
Simply setup all the addressing manually through the GUI on each workstation from the IP Addressing table

Quick Summary:

Attention: Rename the hostnames and VLAN names

 

More Resources

About the author

Prasanna

Leave a Comment